Design of next-generation automotive corrosion protective coatings by improving inhibitor transport properties.

Key Information

Supervisors: Prof N McMurray, Prof G Williams and Mr P Keil.

The protective coatings industry is responding to the challenge to find a successful materials substitution for toxic anti-corrosion agents.

Chromium (VI) use has been assigned a “sunset” date of 2019 by the European Union, after which its use will be banned. There is now an urgent need to identify new, environmentally corrosion inhibitive technologies showing equivalent, or better protective capability.

This project provides an excellent opportunity to work collaboratively with a prominent company involved in the automotive coatings market, namely BASF Automotive, to develop new corrosion inhibitive technologies. The current state of the art, involving phosphate-based technology, remains limited, resulting in significant interest in exploiting the properties of intelligent-release pigments, in which corrosion inhibitive species are stored and only released “on demand” in the presence of aggressive corrosion-inducing agents. Furthermore, there is also a need to improve transport of the inhibitor species from the bulk of the coating, to the areas where they are required (e.g. defects where the underlying metal is exposed). Currently, only a finite quantity of inhibitor originating from the coating in the immediate vicinity of the defect may be available to protect exposed metal.

By introducing long-range percolation networks within the coating, it is hoped that enhanced transport of inhibitor to defect regions can produce significantly more effective corrosion inhibition at the exposed metal.

 The Research Engineer will:

  • Investigate the efficiency of inhibition at penetrative coating defects using current state of the art phosphate-based pigments and novel smart-release ion-exchange pigments containing various corrosion inhibitive species.
  • Carry out a detailed study with varying in-coating loadings of the above pigments to evaluate the effect on speed of inhibitor release.
  • Assess novel inhibitor delivery systems such as nanotube reservoirs, ion exchange resins and minerals, conducting polymer networks as a means of introducing a long-range percolation pigment network within the protective organic coating.
  • Evaluate how long-range transport of inhibitor from an optimised system influences the mechanism of coating failure due to de-adhesion originating from anodic and/or cathodic disbondment in the vicinity of a penetrative defect.

The main thrust of the work being to develop -next-generation protective coatings for technologically important light alloy surfaces, typically aluminium and possibly magnesium automotive alloy grades, although the best performing technologies may also be applied to the protection of steel. This program will exploit outstanding expertise in advanced electrochemical scanning techniques, coupled with high throughput methodologies to quantify protection efficiency and provide mechanistic understanding of inhibition mechanisms.

Swansea University is a top 30 UK institution for research excellence (Research Excellence Framework 2014) and has been named Welsh University of the Year 2017 by The Times and Sunday Times Good University Guide.

The Materials and Manufacturing Academy (M2A) in the College of Engineering is a Swansea University initiative which provides postgraduate research training in partnership with industry; providing access to world-class laboratories and a wealth of academic and industry expertise. The M2A is committed to delivering high quality collaborative research opportunities within an inclusive environment, funded by the Welsh European Funding Office (WEFO), the Engineering and Physical Sciences Research Council (EPSRC), Swansea University and Industry partners. 

Interwoven through the research study are business, technical and entrepreneurial courses, designed to support and prepare participants for a senior role in industry or academia, on completion of their studies. Research Engineers may participate in our career mentoring system, offering opportunities to engage with M2A alumni and other senior staff from across the University.  

The Athena SWAN charter recognises work undertaken by institutions to advance gender equality. The College of Engineering is an Athena SWAN bronze award holder and is committee to addressing unequal gender representation.

Applications from women are particularly welcomed. As a positive action to address gender imbalance, female undergraduates considering a career in research are invited to join our two-day laboratory taster session and learn about a typical day in the life of a research engineer.


Sponsoring Company BASF
Company Website Eligibility

We welcome applications from candidates with an Engineering or Physical Science degree (minimum level 2:1), or a combination of degree and equivalent relevant experience to the same level to join the M2A community of research engineers.

To be eligible for WEFO funding, applicants should:

  • Be a UK or EU citizen (eligible for home tuition fees at Swansea University) and have the right to work in Wales at the end of their studies.
  • Be resident within West Wales and the Valleys at the time of enrolment and for the duration of the candidature.
  • Must not be financially able to participate in study for a postgraduate research degree without the award of this funding.

 To be eligible for EPSRC funding, applicants should:

  • Be eligible for home tuition fees at Swansea University.
  • Have settled status in the UK, meaning no restrictions on the length of stay in the UK; and be ‘ordinarily resident’ in the UK for 3 years prior to the start of the grant, apart from temporary or occasional absences.
  • Not have been residing in the UK wholly or mainly for the purpose of full-time education. This does not apply to UK nationals and EU nationals who were ordinarily resident in the EU immediately before the period of full-time education.

Full fees at Home/EU rate for a period of four academic years.

Maintenance stipend at £20K per annum for a period of four years.

Closing Date 15 March 2019

Start Date October 2019

Apply Now

Informal enquiries about this studentship are welcome and may be directed by email to: M2A@swansea.ac.uk